Synthetic Methods and Applications of Functional and Reactive Silicone Polymers

Siloxane polymers (widely known as silicones) are ubiquitous materials with a wide range of applications, from pharmaceuticals and medical devices to nautical sealants and high temperature lubricants. This is due to its robust and advantageous properties as an inorganic-organic polymer, which differ widely from traditional polyolefin materials. In this chapter, the unique and remarkable properties of siloxane polymers will be analyzed, as well as the synthetic strategies for the preparation of traditional and functional silicones. An examination of the functions of siloxane polymers and copolymers in various industries, such as polyurethane foams and fluorosilicone lubricants, is presented. Traditional methods for crosslinking of siloxane polymers and the resulting coatings and bulk materials will be compared with recent advances in silicone coupling reactions, such as the Piers-Rubinsztajn and ‘click’ reactions. Finally, we examine the new emerging approach on the siloxane bond as a reactive functional group in its own right for the preparation of advanced non-stick resins and surfaces.
This is a preview of subscription content, log in via an institution to check access.
Access this chapter
Subscribe and save
Springer+ Basic
€32.70 /Month
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (France)
eBook EUR 139.09 Price includes VAT (France)
Softcover Book EUR 179.34 Price includes VAT (France)
Hardcover Book EUR 179.34 Price includes VAT (France)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Study on the synthesis and application of silicone resin containing phenyl group
Article 28 May 2015

Overview of Silane-Based Polymer Coatings and Their Applications
Chapter © 2016

Factors influencing mechanical long-term stability of condensation curing silicone elastomers
Article 23 October 2020
References
- Ansorge, S., Schmuck, F., & Papailiou, K. O. (2012). Improved silicone rubbers for use as housing material in composite insulators. IEEE Transactions on Dielectrics and Electrical Insulation, 19, 209–217. https://doi.org/10.1109/tdei.2012.6148520.
- Baah, D., Tigner, J., Bean, K., Walker, N., Britton, B., & Floyd-Smith, T. (2012). Microfluidic synthesis and post processing of non-spherical polymeric microparticles. Microfluidics and Nanofluidics, 12, 657–662. https://doi.org/10.1007/s10404-011-0874-6.
- Baferani, A. H., Keshavarz, R., Asadi, M., & Ohadi, A. R. (2018). Effects of silicone surfactant on the properties of open-cell flexible polyurethane foams. Advances in Polymer Technology, 37(1), 71–83. https://doi.org/10.1002/adv.21643. ArticleCASGoogle Scholar
- Baysal, B. M., Uyanik, N., Hamurcu, E. E., & Cvetkovska, M. (1996). Styrene polymerization with a macroinitiator having siloxane units. Journal of Applied Polymer Science, 60(9), 1369–1378. https://doi.org/10.1002/(sici)1097-4628(19960531)60:93.0.co;2-y. ArticleCASGoogle Scholar
- Bernardini, C., Stoyanov, S. D., Cohen Stuart, M. A., & Leermakers, F. A. M. (2011). PMMA highlights the layering transition of PDMS on langmuir films. Langmuir, 27(6), 2501–2508. https://doi.org/10.1021/la104285z. ArticleCASPubMedGoogle Scholar
- Bondurant, S., Ernster, V., Herdman, R., (Eds.). (1999) Safety of silicone breast implants National Academy Press: Washington, DC. https://www.ncbi.nlm.nih.gov/books/nbk44792/. (Accessed July 25, 2019).
- Brook, M. A. (2000). Silicon in organic, organometallic, and polymer chemistry. New York: John Wiley & Sons. ISBN: 978-0-471-19658-7. Google Scholar
- Brook, M. A. (2012). The chemistry and physical properties of biomedical silicones. In W. Peters, H. Brandon, K. L. Jerina, C. Wolf, & V. L. Young (Eds.), Biomaterials in plastic surgery: Breast implants (pp. 52–67). Cambridge, MA: Woodward Publishing. https://doi.org/10.1533/9780857096418.52. ChapterGoogle Scholar
- Brook, M. A. (2018). New control over silicone synthesis using SiH chemistry: The Piers–Rubinsztajn reaction. Chemistry - A European Journal, 24(34), 8458–8469. https://doi.org/10.1002/chem.201800123. ArticleCASGoogle Scholar
- Brook, M. A., Grande, J. B., & Ganachaud, F. (2010). New synthetic strategies for structured silicones using B(C6F5)3. In A. Muzafarov (Ed.), Silicon polymers (Advances in polymer science) (Vol. 235, pp. 161–183). Berlin/Heidelberg: Springer. https://doi.org/10.1007/12_2009_47. ChapterGoogle Scholar
- Buff, H., & Wöhler, F. (1857). Ueber neue Verbindungen des Siliciums. Justus Liebigs Annalen der Chemie, 104(1), 94–109. https://doi.org/10.1002/jlac.18571040108. ArticleGoogle Scholar
- Buining, P. A., Humbel, B. M., Philipse, A. P., & Verkleij, A. J. (1997). Submicron particles of reversed lipid phases in water stabilized by a nonionic amphiphilic polymer. Langmuir, 13(26), 6964–6971. https://doi.org/10.1021/la970566+. ArticleGoogle Scholar
- Calas, R., & Dunoguès, J. (1976). Platinum derivatives of decafluorophosphorobenzene and decafluoroarsenobenzene. The crystal structure of Pt (PPh3)2 (PC6F5)2. The Journal of Organometallic Chemistry, 122(2), 281–288. https://doi.org/10.1016/s0022-328x(00)80621-x. ArticleGoogle Scholar
- Camino, G., Lomakin, S. M., & Lageard, M. (2002). Thermal polydimethylsiloxane degradation. Part 2. The degradation mechanisms. Polymer, 43, 2011–2015. https://doi.org/10.1016/S0032-3861(01)00785-6. ArticleCASGoogle Scholar
- Carneiro, L. B., Ferreira, J., Santos, M. J. L., Monteiro, J. P., & Girotto, E. M. (2011). A new approach to immobilize poly(vinyl alcohol) on poly(dimethylsiloxane) resulting in low protein adsorption. Applied Surface Science, 257(24), 10514–10519. https://doi.org/10.1016/j.apsusc.2011.07.031. ArticleCASGoogle Scholar
- Chen, C. P., Lu, F., & Tong, Q. X. (2018). Three tetrasiloxane-tailed cationic gemini surfactants: The effect of different spacer rigidity on surface properties and aggregation behaviors. Journal of Molecular Liquids, 266, 504–513. https://doi.org/10.1016/j.molliq.2018.06.112. ArticleCASGoogle Scholar
- Clarson, S. J., & Semlyen, J. A. (1993). Siloxane polymers. Prentice Hill: Englewood Cliffs. ISBN: 978-0138163150. Google Scholar
- Cornwell, P. A. (2018). A review of shampoo surfactant technology: Consumer benefits, raw materials and recent developments. International Journal of Cosmetic Science, 40, 16–30. https://doi.org/10.1111/ics.12439. ArticleCASPubMedGoogle Scholar
- Dewasthale, S., Andrews, C., Graiver, D., & Narayan, R. (2017). Water soluble Polysiloxanes. SILICON, 9, 619–628. https://doi.org/10.1007/s12633-015-9334-3. ArticleCASGoogle Scholar
- Dunham, M. L., Bailey, D. L., & Mixer, R. Y. (1957). New curing system for silicone rubber. Industrial and Engineering Chemistry, 49(9), 1373–1376. https://doi.org/10.1021/ie50573a029. ArticleCASGoogle Scholar
- Eduok, U., Faye, O., & Szpunar, J. (2017). Recent developments and applications of protective silicone coatings: A review of PDMS functional materials. Progress in Organic Coatings, 111, 124–163. https://doi.org/10.1016/j.porgcoat.2017.05.012. ArticleCASGoogle Scholar
- Fawcett, A. S., Grande, J. B., & Brook, M. A. (2013). Rapid, metal-free room temperature vulcanization produces silicone elastomers. Journal of Polymer Science: Part A, 51(3), 644–652. https://doi.org/10.1002/pola.26414. ArticleCASGoogle Scholar
- Fink, J. K. (2018). Reactive polymers: Fundamentals and applications: A concise guide to industrial polymers. Cambridge: Elsevier. isbn:978-0-12-814509-8. https://doi.org/10.1016/c2017-0-01641-5
- Flagg, D. H., & McCarthy, T. J. (2016). Rediscovering silicones: MQ copolymers. Macromolecules, 49(22), 8581–8592. https://doi.org/10.1021/acs.macromol.6b01852. ArticleCASGoogle Scholar
- Flagg, D. H., & McCarthy, T. J. (2017). Rapid and clean covalent attachment of methylsiloxane polymers and oligomers to silica using B(C6F5)3 catalysis. Langmuir, 33(33), 8129–8139. https://doi.org/10.1021/acs.langmuir.7b01751. ArticleCASPubMedGoogle Scholar
- Fritz, J. L., & Owen, M. J. (1995). Hydrophobic recovery of plasma-treated polydimethylsiloxane. Journal of Adhesion, 54, 33–45. https://doi.org/10.1080/00218469508014379. ArticleCASGoogle Scholar
- Furtwengler, P., & Avérous, L. (2018). Renewable polyols for advanced polyurethane foams from diverse biomass resources. Polymer Chemistry, 9(32), 4258–4287. https://doi.org/10.1039/c8py00827b. ArticleCASGoogle Scholar
- Gädda, T. M., & Weber, W. P. (2006). Polydiphenylsiloxane-polydimethylsiloxane-polydiphenylsiloxane triblock copolymers. Journal of Polymer Science, 44, 3629–3639. https://doi.org/10.1002/pola.21468. ArticleCASGoogle Scholar
- Gao, L. C., & McCarthy, T. J. (2006a). The “Lotus Effect” explained: Two reasons why two length scales of topography are important. Langmuir, 22(7), 2966–2967. https://doi.org/10.1021/la0532149. ArticleCASPubMedGoogle Scholar
- Gao, L., & McCarthy, T. J. (2006b). Contact angle hysteresis explained. Langmuir, 22(21), 6234–6237. https://doi.org/10.1021/la060254j. ArticleCASPubMedGoogle Scholar
- Gentle, T. E., & Snow, S. A. (1995). Absorption of small silicone polyether surfactants at the air/water surface. Langmuir, 11(8), 2905–2910. https://doi.org/10.1021/la00008a011. ArticleCASGoogle Scholar
- Gonzaga, F., Yu, G., & Brook, M. A. (2009). Versatile, efficient derivatization of polysiloxanes via click technology. Chemical Communications, 13, 1730–1732. https://doi.org/10.1039/b821788b. ArticleCASGoogle Scholar
- Graiver, D., Farminer, K. W., & Narayan, R. (2003). A review of the fate and effects of silicones in the environment. Journal of Polymers and the Environment, 11(4), 129. https://doi.org/10.1023/a:1026056129717. ArticleCASGoogle Scholar
- Grande, J. B., Urlich, T., Dickie, T., & Brook, M. A. (2014). Silicone dendrons and dendrimers from orthogonal SiH coupling reactions. Polymer Chemistry, 5(23), 6728–6739. https://doi.org/10.1039/c4py00680a. ArticleCASGoogle Scholar
- Guidi, G., Hughes, T. C., Whinton, M., Brook, M. A., & Sheardown, H. (2014). The effect of silicone hydrogel contact lens composition on dexamethasone release. Journal of Biomaterials Applications, 29(2), 222–233. https://doi.org/10.1177/0885328214521253. ArticleCASPubMedGoogle Scholar
- Hammouch, S. O., Beinert, G. J., Zillox, J. G., & Herz, J. E. (1995). Synthesis and characterization of monofunctional polydimethylsiloxanes with a narrow weight distribution. Polymer, 36, 421–426. https://doi.org/10.1016/0032-3861(95)91334-4. ArticleCASGoogle Scholar
- Hasan, S. M., Easley, A. D., Monroe, M. B. B., & Maitland, D. J. (2016). Development of siloxane-based amphiphiles as cell stabilizers for porous shape memory polymer systems. Journal of Colloid and Interface Science, 478, 334–343. https://doi.org/10.1016/j.jcis.2016.06.031. ArticleCASPubMedPubMed CentralGoogle Scholar
- Heiner, J., Stenberg, P., & M. (2003). Crosslinking of siloxane elastomers. Polymer Testing, 22, 253–257. https://doi.org/10.1016/S0142-9418(02)00081-8. ArticleCASGoogle Scholar
- Hölle, H. J., & Lehnen, B. R. (1975). Preparation and characterization of polydimethylisiloxanes with narrow weigh distribution. European Polymer Journal, 11, 663–667. https://doi.org/10.1016/0014-3057(75)90060-9. ArticleGoogle Scholar
- Horii, Y., & Kannan, K. (2008). Survey of organosilicone compounds, including cyclic and linear siloxanes, in personal-care and household products. Archives of Environmental Contamination and Toxicology, 55, 701–710. https://doi.org/10.1007/s00244-008-9172-z. ArticleCASPubMedGoogle Scholar
- Hozumi, A., Cheng, D. F., & Yagihashi, M. (2011). Hydrophobic/superhydrophobic oxidized metal surfaces showing negligible contact angle hysteresis. Journal of Colloid and Interface Science, 353(2), 582–587. https://doi.org/10.1016/j.jcis.2010.09.075. ArticleCASPubMedGoogle Scholar
- Hurd, C. B. (1946). Studies on siloxanes. I. The specific volume and viscosity in relation to temperature and constitution. Journal of the American Chemical Society, 68(3), 364–370. https://doi.org/10.1021/ja01207a005. ArticleCASGoogle Scholar
- Hastings, D. L., Schoenitz, M., Ryan, K. M., Dreizin, E. L., Krumpfer, J. W.(2020). Stability and Ignition of a Siloxane‐Coated Magnesium Powder. Propellants, Explosives, Pyrotechnics, 45(4), 621–627. https://doi.org/10.1002/prep.201900272.
- Jones, R. G., Ando, W., & Chojnowski, J. (Eds.). (2000). Silicon-Containing polymers: The science and technology of their synthesis and applications. Heidelberg: Springer. isbn:978-94-011-3939-7. https://doi.org/10.1007/978-94-011-3939-7
- Kalasho, B.D., Kikuchi, R. & Zoumalan, C.I. (2019). Silicone-based scar cream for post upper eyelid blepharoplasty-associated cicatricial and hypertrophic scarring. Journal of Drugs in Dermatology, 18, 440–446. https://jddonline.com/articles/dermatology/s1545961619p0440x/ (Accessed July 25, 2019).
- Kanner, B., Reid, W. G., & Petersen, I. H. (1967). Synthesis and properties of Siloxane-polyether copolymer surfactants. Industrial and Engineering Chemistry Product Research and Development, 6(2), 88–92. https://doi.org/10.1021/i360022a002. ArticleCASGoogle Scholar
- Karki, A., Nguyen, L., Sharma, B., Yan, Y., & Chen, W. (2016). Unusual morphologies of poly(vinyl alcohol) thin films adsorbed on poly(dimethylsiloxane) substrates. Langmuir, 32(13), 3191–3198. https://doi.org/10.1021/acs.langmuir.6b00470. ArticleCASPubMedGoogle Scholar
- Kawahara, K., Hagiwara, Y., & Kuroda, K. (2011). Dendritic, nanosized building block for siloxane-based materials: A spherosilicate dendrimer. Chemistry - A European Journal, 17(47), 13188–13196. https://doi.org/10.1002/chem.201102205. ArticleCASGoogle Scholar
- Kendrick, T. C., Kingston, B. M., Lloyd, N. C., & Owen, M. J. (1967). The surface chemistry of polyurethane foam formation: I. Equilibrium surface tensions of polysiloxane-polyether block copolymer solutions. Journal of Colloid and Interface Science, 24(2), 135–140. https://doi.org/10.1016/0021-9797(67)90210-x. ArticleCASGoogle Scholar
- Kipping, F. S. (1937). The bakerian lecture organic derivatives of silicon. Proceedings of the Royal Society. (London), 159(896), 0139–0148. https://doi.org/10.1098/rspa.1937.0063. ArticleCASGoogle Scholar
- Kipping, F. S., & Lloyd, L. L. (1901). XLVII.—Organic derivatives of silicon. Triphenylsilicol and alkyloxysilicon chlorides. Journal of the Chemical Society, 79, 449–459. https://doi.org/10.1039/ct9017900449. ArticleCASGoogle Scholar
- Krumpfer, J. W., & McCarthy, T. J. (2010). Contact angle hysteresis: A different view and a trivial recipe for low hysteresis hydrophobic surfaces. Faraday Discussions, 146, 103–111. https://doi.org/10.1039/b925045j. ArticleCASPubMedGoogle Scholar
- Krumpfer, J. W., & McCarthy, T. J. (2011). Rediscovering silicones: “unreactive” silicones react with inorganic surfaces. Langmuir, 27(18), 11514–11519. https://doi.org/10.1021/la202583w. ArticleCASPubMedGoogle Scholar
- Kumar, V., & Lee, D.-J. (2017). Effects of thinner on RTV silicone rubber nanocomposites reinforced with GR and CNTs. Polymers for Advanced Technologies, 28(12), 1842–1850. https://doi.org/10.1002/pat.4071. ArticleCASGoogle Scholar
- Ladenburg, A. (1872). Ueber die Reductionsproducte des Kieselsäureäthers und deren Derivate. Liebigs Annalen der Chemie, 164(2), 300–332. https://doi.org/10.1002/jlac.18721640212. ArticleGoogle Scholar
- Lambert, J. M. (2006). The nature of platinum in silicones for biomedical and healthcare use. Journal of Biomedical Materials Research, 78B(1), 167–180. https://doi.org/10.1002/jbm.b.30471. ArticleCASGoogle Scholar
- Lewis, L. N. (1990). On the mechanism of metal colloid catalyzed hydrosilylation: Proposed explanations for electronic effects and oxygen cocatalysis. Journal of the American Chemical Society, 112(16), 5998. https://doi.org/10.1021/ja00172a014. ArticleCASGoogle Scholar
- Lin, Y., Wang, L., Krumpfer, J. W., Watkins, J. J., & McCarthy, T. J. (2013). Hydrophobization of inorganic oxide surfaces using dimethylsilanediol. Langmuir, 29(5), 1329–1332. https://doi.org/10.1021/la303963q. ArticleCASPubMedGoogle Scholar
- Lin, J., Wang, W., Bai, W., Zhu, M., Zheng, C., Liu, Z., Cai, X., Lu, D., Qiao, Z., Chen, F., & Chen, J. (2017). A gemini-type superspreader: Synthesis, spreading behavior and superspreading mechanism. Chemical Engineering Journal, 315, 262–273. https://doi.org/10.1016/j.cej.2016.12.132. ArticleCASGoogle Scholar
- Liu, Q. H., Singha, P., Handa, H., & Locklin, J. (2017). Covalent grafting of antifouling phosphorylcholine-based copolymers with antimicrobial nitric oxide releasing polymers to enhance infection-resistant properties of medical device coatings. Langmuir, 33, 13105–13113. https://doi.org/10.1021/acs.langmuir.7b02970. ArticleCASPubMedGoogle Scholar
- Longenberger, T.B., Krumpfer, J.W., (n.d.) Unpublished results. Google Scholar
- Longenberger, T. B., Ryan, K. M., Bender, W. Y., Krumpfer, A.-K., & Krumpfer, J. W. (2017). The art of silicones: Bringing siloxane chemistry to the undergraduate curriculum. Journal of Chemical Education, 94(11), 1682–1690. https://doi.org/10.1021/acs.jchemed.6b00769. ArticleCASGoogle Scholar
- Makamba, H., Kim, J. H., Lim, K., Park, N., & Hahn, J. H. (2003). Surface modification of poly (dimethylsiloxane) microchannels. Electrophoresis, 24(21), 3607–3619. https://doi.org/10.1002/elps.200305627. ArticleCASPubMedGoogle Scholar
- Marciniec, B., & Gulinski, J. (1993). Recent advances in catalytic hydrosilylation. Journal of Organometallic Chemistry, 446(1–2), 15–23. https://doi.org/10.1016/0022-328x(93)80030-f. ArticleCASGoogle Scholar
- Mark, J. E. (Ed.). (1999). Polymer data handbook. New York: Oxford University Press. https://doi.org/10.1021/ja907879q. BookGoogle Scholar
- Mathew, A., Kurmvanshi, S., Mohanty, S., & Nayak, S. K. (2018). Sustainable production of polyurethane from castor oil, functionalized with epoxy- and hydroxyl-terminated poly(dimethyl siloxane) for biomedical applications. Journal of Materials Science, 53(5), 3119–3130. https://doi.org/10.1007/s10853-017-1757-3. ArticleCASGoogle Scholar
- Missaghi, M. N., Downing, C. M., Kung, M. C., & Kung, H. H. (2008). Synthesis of organofunctional silicon hydride halides from methylchlorosilane. Organometallics, 27(23), 6364–6366. https://doi.org/10.1021/om8002625. ArticleCASGoogle Scholar
- Morgan, J., Chen, T., Hayes, R., Dickie, T., Urlich, T., & Brook, M. (2017). Facile synthesis of dendron-branched silicone polymers. Polymer Chemistry, 8(18), 2743–2746. https://doi.org/10.1039/c7py00260b. ArticleCASGoogle Scholar
- Müller, R., German Patent No. C57411, 1942. Google Scholar
- Nasir, I. A. A., Alis, A., Mohamad, Z., Che Man, S. H., & Majid, R. A. (2016). Rigid polyurethane foam from palm oil polyol-polyethylene glycol blend. Journal of Polymer Materials, 33, 629–637. ISSN: 09738622. CASGoogle Scholar
- O’Lenick, A. J., Jr. (2000). Silicone emulsions and surfactants. Journal of Surfactants and Detergents, 3(3), 387–393. https://doi.org/10.1007/s11743-000-0143-y. ArticleGoogle Scholar
- Odian, G. (2004). Principles of polymerization (Fourth ed.). Hoboken: John Wiley & Sons. isbn:0-471-27400-3. https://doi.org/10.1002/047147875x.
- Okamoto, Y., Crossan, D., Ferrigno, K., & Nakos, S. (1988). Ultraviolet curable siloxane polymers. In L. H. Lee (Ed.), Adhesives, sealants, and coatings for space and harsh environments (Polymer science and technology) (Vol. 37). Boston: Springer. isbn:978-1-4613-1047-1. Google Scholar
- Otomo, Y., Nagase, Y., & Nemoto, N. (2005). Synthesis and properties of novel poly(tetramethylsilnaphthylenesiloxane) derivatives. Polymer, 46(23), 9714–9724. https://doi.org/10.1016/j.polymer.2005.08.063. ArticleCASGoogle Scholar
- Owen, M. J., & Dvornic, P. R. (Eds.). (2012). Silicone surface science (advances in silicon science 4). Dordrecht: Springer. https://doi.org/10.1007/978-94-007-3876-8. BookGoogle Scholar
- Parks, D. J., & Piers, W. E. (1996). Tris(pentafluorophenyl)boron-Catalyzed Hydrosilation of Aromatic Aldehydes, Ketones, and Esters. Journal of the American Chemical Society, 118(39), 9440–9441. https://doi.org/10.1021/ja961536g. ArticleCASGoogle Scholar
- Paterson, S. M., Liu, L., Brook, M. A., & Sheardown, H. (2014). Poly(ethylene glycol)- or silicone-modified hyaluronan for contact lens wetting agent applications. Journal of Biomedical Materials Research A, 103(8), 2602–2610. https://doi.org/10.1002/jbm.a.35385. ArticleCASGoogle Scholar
- Peters, M. A., Belu, A. M., Linton, R. W., Dupray, L., & Meyer, T. J. (1995). Termination of living anionic polymerizations using chlorosilane derivatives: A general synthetic methodology for synthesis of end-functionalized polymers. Journal of the American Chemical Society, 117, 3380–3388. https://doi.org/10.1021/ja00117a008. ArticleCASGoogle Scholar
- Picard, J.-P., Grelier, S., Constantieux, T., Dunoguès, J., Aizpurua, J. M., Palomo, C., Pétraud, M., Barbe, B., Lunazzi, L., & Léger, J.-M. (1993). Bis(trimethylsilyl)methylamine from cyanides. Organometallics, 12(4), 1378. https://doi.org/10.1021/om00028a062. ArticleCASGoogle Scholar
- Piccoli, W. A., Haberland, G. G., & Merker, R. L. (1960). Highly strained cyclic paraffin-siloxanes. Journal of the American Chemical Society, 82, 1883. https://doi.org/10.1021/ja01493a012. ArticleCASGoogle Scholar
- Plueddemann, E. W. (1991). Silane coupling agents (2nd ed.). Plenum: New York. isbn:978-1-4899-2070-6. BookGoogle Scholar
- Post, H. W. (1949). Silicones and other organosilicon compounds. New York: Reinhold. Google Scholar
- Rambarran, T., Gonzaga, F., & Brook, M. A. (2013). Multifunctional amphiphilic siloxane architectures using sequential, metal-free click ligations. Journal of Polymer Science: Part A, 51(4), 855–864. https://doi.org/10.1002/pola.26442. ArticleCASGoogle Scholar
- Rambarran, T., Gonzaga, F., Brook, M. A., Lasowski, F., & Sheardown, H. (2015). Amphiphilic thermoset elastomers from metal-free, click crosslinking of PEG-grafted silicone surfactants. Journal of Polymer Science: Part A, 53(9), 1082–1093. https://doi.org/10.1002/pola.27539. ArticleCASGoogle Scholar
- Rochow, E. G. (1945). Pyridine from furfural. Journal of the American Chemical Society, 67(4), 693–693. https://doi.org/10.1021/ja01220a510. ArticleGoogle Scholar
- Rochow, E. G. (1946). Introduction to the chemistry of the silicones. New York/London: John Wiley & Sons, Chapman & Hall. ISBN: 978-1298498397. BookGoogle Scholar
- Rodriguez-Lopez, L., Shokry, D. S., Cruz, J. M., Moldes, A. B., & Waters, L. J. (2019). The effect of the presence of biosurfactant on the permeation of pharmaceutical compounds through silicone membrane. Colloids and Surfaces B: Biointerfaces, 176, 456–461. https://doi.org/10.1016/j.colsurfb.2018.12.072. ArticleCASPubMedGoogle Scholar
- Rubinsztajn, S., & Cella, J. A. (2005). A new polycondensation process for the preparation of polysiloxane copolymers. Macromolecules, 38(4), 1061–1063. https://doi.org/10.1021/ma047984n. ArticleCASGoogle Scholar
- Ryan, K. J., Lupton, K. E., Pape, P. G., & John, V. B. (2004). Ultra-high-molecular-weight functional siloxane additives in polymers. Effects on processing and properties. Journal of Vinyl & Additive Technology, 6, 7–19. https://doi.org/10.1002/vnl.10217. ArticleGoogle Scholar
- Sankaran, A., Karakashev, S. I., Sett, S., Grozev, N., & Yarin, A. L. (2019). On the nature of the superspreaders. Advances in Colloid and Interface Science, 263, 1–18. https://doi.org/10.1016/j.cis.2018.10.006. ArticleCASPubMedGoogle Scholar
- Semsarzadeh, M. A., & Amiri, S. (2013). Silicone macroinitiator in atom transfer radical polymerization of styrene and vinyl acetate: Synthesis and characterization of pentablock copolymers. Journal of Inorganic and Organometallic Polymers, 23(2), 432–438. https://doi.org/10.1007/s10904-012-9800-y. ArticleCASGoogle Scholar
- Song, L., Wang, Z., Tang, X., Chen, L., Chen, P., Yuan, Q., & Li, L. (2017). Visualizing the toughening mechanism of nanofiller with 3D X-ray nano-ct: Stress/induced phase separation of silica nanofiller and silicone polymer double networks. Macromolecules, 50, 7249–7257. https://doi.org/10.1021/acs.macromol.7b00539. ArticleCASGoogle Scholar
- Sun, F., Hu, Y. L., & Du, H. G. (2012). Synthesis and characterization of MQ silicone resins. Journal of Applied Polymer Science, 125(5), 3532–3536. https://doi.org/10.1002/app.35194. ArticleCASGoogle Scholar
- Taskiran, I. (2006). Structural modification of expandable polystyrene. III. Copolymerization with siloxane-based macroinitiator. Journal of Applied Polymer Science, 100(6), 4826–4831. https://doi.org/10.1002/app.22541. ArticleCASGoogle Scholar
- This is noted on page (n.d.) 262 of Reference 3. Google Scholar
- Thomas, N. R. (2010). Frederic Stanley Kipping—Pioneer in silicon chemistry: His life & legacy. SILICON, 2(4), 187–193. https://doi.org/10.1007/s12633-010-9051-x. ArticleCASGoogle Scholar
- Uchida, H., Kabe, Y., Yoshino, K., Kawamata, A., Tsumuraya, T., & Masamune, S. (1990). General strategy for the systematic synthesis of oligosiloxanes. Silicone dendrimers. Journal of the American Chemical Society, 112(19), 7077–7079. https://doi.org/10.1021/ja00175a062. ArticleCASGoogle Scholar
- Wagner, R., Wu, Y., Czichocki, G., Berlepsch, H. V., Rexin, F., & Perepelittchenko, L. (1999a). Silicon-modified surfactants and wetting: I. Synthesis of the single components of Silwet L77 and their spreading performance on a low-energy solid surface. Applied Organometallic Chemistry, 13(9), 611–620. https://doi.org/10.1002/(sici)1099-0739(199909)13:93.0.co;2-e. ArticleCASGoogle Scholar
- Wagner, R., Wu, Y., Czichocki, G., Berlepsch, H. V., Rexin, F., & Perepelittchenko, L. (1999b). Silicon-modified surfactants and wetting: III. The spreading behaviour of equimolar mixtures of nonionic trisiloxane surfactants on a low-energy solid surface. Applied Organometallic Chemistry, 13(9), 621–630. https://doi.org/10.1002/(sici)1099-0739(199909)13:93.0.co;2-a. ArticleCASGoogle Scholar
- Wang, G., Zhu, Y., Zhai, Y., Wang, W., Du, Z., & Qin, J. (2017). Polyglycerol modified polysiloxane surfactants: Their adsorption and aggregation behavior in aqueous solution. Journal of Industrial and Engineering Chemistry, 47, 121–127. https://doi.org/10.1016/j.jiec.2016.11.023. ArticleCASGoogle Scholar
- Wu, C., Yu, J., Li, Q., & Liu, Y. (2017). High molecular weight cyclic polysiloxanes from organocatalytic zwitterionic polymerization of constrained spirocyclosiloxanes. Polymer Chemistry, 8(47), 7301–7306. https://doi.org/10.1039/c7py01499f. ArticleCASGoogle Scholar
- Yan, Y., Qi, Y., & Chen, W. (2018). Strategies to hydrophilize silicones via spontaneous adsorption of poly(vinyl alcohol) from aqueous solution. Colloids and Surfaces A, 546, 186–193. https://doi.org/10.1016/j.colsurfa.2018.03.024. ArticleCASGoogle Scholar
- Yilgör, E., & Yilgör, I. (2014). Silicone containing copolymers: Synthesis, properties and applications. Progress in Polymer Science, 39(6), 1165–1195. https://doi.org/10.1016/j.progpolymsci.2013.11.003. ArticleCASGoogle Scholar
- Yoshimura, N., Kumagai, S., & Nishimura, S. (1999). Electrical and environmental aging of silicone rubber used in outdoor insulation. IEEE Trans. Dielectrics and Electrical Insulation, 6, 632–650. https://doi.org/10.1109/94.798120. ArticleCASGoogle Scholar
- Zhang, X.D., Macosko, C.W., Davis, H.T., Nikolov, A.D., & Wasan, D. T. (1999). Role of silicone surfactant in flexible polyurethane foam. Journal of Colloid and Interface Science, 215(2), 270–279. https://doi.org/10.1006/jcis.1999.6233.
- Zarrintaj, P., Jouyandeh, M., Ganjali, M. R., Hadavand, B. S., Mozafari, M., Sheiko, S. S., Vatankhah-Varnoosfaderani, M., Gutiérrez, T. J., & Saeb, M. R. (2019). Thermo-sensitive polymers in medicine: A review. European Polymer Journal, 117, 402–423. https://doi.org/10.1016/j.eurpolymj.2019.05.024. ArticleCASGoogle Scholar
- Zelisko, P. M. (Ed.). (2014). Advances in silicon science 5: Bio-inspired silicon-based materials. Dordrecht: Springer. https://doi.org/10.1007/978-94-017-9439-88. BookGoogle Scholar
- Zhang, J., & Seeger, S. (2011). Polyester materials with superwetting silicone nanofilaments for oil/water separation and selective oil absorption. Advanced Functional Materials, 21(24), 4699–4704. https://doi.org/10.1002/adfm.201101090. ArticleCASGoogle Scholar
- Zhang, J., Chen, Y., & Brook, M. A. (2013). Facile functionalization of PDMS elastomer surfaces using thiol–ene click chemistry. Langmuir, 29(40), 12432–12442. https://doi.org/10.1021/la403425d. ArticleCASPubMedGoogle Scholar
- Zheng, P., & McCarthy, T. J. (2010). Rediscovering silicones: Molecularly smooth, low surface energy, unfilled, UV/Vis-transparent, extremely cross-linked, thermally stable, hard, elastic PDMS. Langmuir, 26(24), 18585–18590. https://doi.org/10.1021/la104065e. ArticleCASPubMedGoogle Scholar
- Zheng, P., & McCarthy, T. J. (2012). A surprise from 1954: Siloxane equilibration is a simple, robust, and obvious polymer self-healing mechanism. Journal of the American Chemical Society, 134(4), 2024–2027. https://doi.org/10.1021/ja2113257. ArticleCASPubMedGoogle Scholar
- Zhou, J., Ellis, A. V., & Voelcker, N. H. (2010). Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis, 31(1), 2–16. https://doi.org/10.1002/elps.200900475. ArticleCASPubMedGoogle Scholar
- Zhou, J., Khodakov, D. A., Ellis, A. V., & Voelcker, N. H. (2012). Surface modification for PDMS-based microfluidic devices. Electrophoresis, 33(1), 89–104. https://doi.org/10.1002/elps.201100482. ArticleCASPubMedGoogle Scholar
- Zlatanic, A., Radojcic, D., Wan, X., Messman, J. M., & Dvornic, P. R. (2018). Monitoring of the course of the Silanolate-initiated polymerization of cyclic Siloxanes. A mechanism for the copolymerization of dimethyl and diphenyl monomers. Macromolecules, 51(3), 895–905. https://doi.org/10.1021/acs.macromol.7b02658. ArticleCASGoogle Scholar
Acknowledgments
The authors thank the Pace University Office of the Provost for financial support.